28 research outputs found

    Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    Get PDF
    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists

    Deriving Earth Science Data Analytics Requirements

    Get PDF
    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed

    Accessing and Utilizing Remote Sensing Data for Vectorborne Infectious Diseases Surveillance and Modeling

    Get PDF
    Background: The transmission of vectorborne infectious diseases is often influenced by environmental, meteorological and climatic parameters, because the vector life cycle depends on these factors. For example, the geophysical parameters relevant to malaria transmission include precipitation, surface temperature, humidity, elevation, and vegetation type. Because these parameters are routinely measured by satellites, remote sensing is an important technological tool for predicting, preventing, and containing a number of vectorborne infectious diseases, such as malaria, dengue, West Nile virus, etc. Methods: A variety of NASA remote sensing data can be used for modeling vectorborne infectious disease transmission. We will discuss both the well known and less known remote sensing data, including Landsat, AVHRR (Advanced Very High Resolution Radiometer), MODIS (Moderate Resolution Imaging Spectroradiometer), TRMM (Tropical Rainfall Measuring Mission), ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), EO-1 (Earth Observing One) ALI (Advanced Land Imager), and SIESIP (Seasonal to Interannual Earth Science Information Partner) dataset. Giovanni is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center. It provides a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. After remote sensing data is obtained, a variety of techniques, including generalized linear models and artificial intelligence oriented methods, t 3 can be used to model the dependency of disease transmission on these parameters. Results: The processes of accessing, visualizing and utilizing precipitation data using Giovanni, and acquiring other data at additional websites are illustrated. Malaria incidence time series for some parts of Thailand and Indonesia are used to demonstrate that malaria incidences are reasonably well modeled with generalized linear models and artificial intelligence based techniques. Conclusions: Remote sensing data relevant to the transmission of vectorborne infectious diseases can be conveniently accessed at NASA and some other websites. These data are useful for vectorborne infectious disease surveillance and modeling

    Visualization of and Access to CloudSat Vertical Data through Google Earth

    Get PDF
    Online tools, pioneered by the Google Earth (GE), are facilitating the way in which scientists and general public interact with geospatial data in real three dimensions. However, even in Google Earth, there is no method for depicting vertical geospatial data derived from remote sensing satellites as an orbit curtain seen from above. Here, an effective solution is proposed to automatically render the vertical atmospheric data on Google Earth. The data are first processed through the Giovanni system, then, processed to be 15-second vertical data images. A generalized COLLADA model is devised based on the 15-second vertical data profile. Using the designed COLLADA models and satellite orbit coordinates, a satellite orbit model is designed and implemented in KML format to render the vertical atmospheric data in spatial and temporal ranges vividly. The whole orbit model consists of repeated model slices. The model slices, each representing 15 seconds of vertical data, are placed on the CloudSat orbit based on the size, scale, and angle with the longitude line that are precisely and separately calculated on the fly for each slice according to the CloudSat orbit coordinates. The resulting vertical scientific data can be viewed transparently or opaquely on Google Earth. Not only is the research bridged the science and data with scientists and the general public in the most popular way, but simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data, e.g. comparing the vertical data profiles with MODIS and AIRS precipitation data, becomes possible

    Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Get PDF
    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data

    Approach to Managing MeaSURES Data at the GSFC Earth Science Data and Information Services Center (GES DISC)

    Get PDF
    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects

    Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    Get PDF
    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014

    3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    Get PDF
    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independentl

    Visualization and Analysis of Multi-scale Land Surface Products via Giovanni Portals

    Get PDF
    Large volumes of MODIS land data products at multiple spatial resolutions have been integrated into the Giovanni online analysis system to support studies on land cover and land use changes,focused on the Northern Eurasia and Monsoon Asia regions through the LCLUC program. Giovanni (Goddard Interactive Online Visualization ANd aNalysis Infrastructure) is a Web-based application developed by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), providing a simple and intuitive way to visualize, analyze, and access Earth science remotely-sensed and modeled data.Customized Giovanni Web portals (Giovanni-NEESPI andGiovanni-MAIRS) have been created to integrate land, atmospheric,cryospheric, and societal products, enabling researchers to do quick exploration and basic analyses of land surface changes, and their relationships to climate, at global and regional scales. This presentation shows a sample Giovanni portal page, lists selected data products in the system, and illustrates potential analyses with imagesand time-series at global and regional scales, focusing on climatology and anomaly analysis. More information is available at the GES DISCMAIRS data support project portal: http:disc.sci.gsfc.nasa.govmairs

    Community-Based Services that Facilitate Interoperability and Intercomparison of Precipitation Datasets from Multiple Sources

    Get PDF
    Over the past 12 years, large volumes of precipitation data have been generated from space-based observatories (e.g., TRMM), merging of data products (e.g., gridded 3B42), models (e.g., GMAO), climatologies (e.g., Chang SSM/I derived rain indices), field campaigns, and ground-based measuring stations. The science research, applications, and education communities have greatly benefited from the unrestricted availability of these data from the Goddard Earth Sciences Data and Information Services Center (GES DISC) and, in particular, the services tailored toward precipitation data access and usability. In addition, tools and services that are responsive to the expressed evolving needs of the precipitation data user communities have been developed at the Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google NASA PDISC), located at the GES DISC, to provide users with quick data exploration and access capabilities. In recent years, data management and access services have become increasingly sophisticated, such that they now afford researchers, particularly those interested in multi-data set science analysis and/or data validation, the ability to homogenize data sets, in order to apply multi-variant, comparison, and evaluation functions. Included in these services is the ability to capture data quality and data provenance. These interoperability services can be directly applied to future data sets, such as those from the Global Precipitation Measurement (GPM) mission. This presentation describes the data sets and services at the PDISC that are currently used by precipitation science and applications researchers, and which will be enhanced in preparation for GPM and associated multi-sensor data research. Specifically, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) will be illustrated. Giovanni enables scientific exploration of Earth science data without researchers having to perform the complicated data access and match-up processes. In addition, PDISC tool and service capabilities being adapted for GPM data will be described, including the Google-like Mirador data search and access engine; semantic technology to help manage large amounts of multi-sensor data and their relationships; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion to various formats (e.g., netCDF, HDF, KML (for Google Earth)); visualization and analysis of Level 2 data profiles and maps; parameter and spatial subsetting; time and temporal aggregation; regridding; data version control and provenance; continuous archive verification; and expertise in data-related standards and interoperability. The goal of providing these services is to further the progress towards a common framework by which data analysis/validation can be more easily accomplished
    corecore